


Overview

@ Until now, we have treated a distribution X over {0,1}" as the
function X: {0,1}" — R such that X(w) :=P[X = w]

@ However, for intuition purposes, we want to develop concepts
that are unique to distributions that are analogous to the
concepts in Fourier analysis of functions
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Bias of a Distribution: Intuition

e Let X be a distribution over {0,1}"
e Consider the following algorithm for a fixed S € {0,1}"

@ Sample x ~ X
© Output S+ x

@ The output distribution is over the sample space {0,1}. Let py
represent the probability that the output of this algorithm is 0;
and, p; represent the probability of the output being 1.

e We want to say that the output is “unbiased” (or, “has bias 0")
if po = p1 = 1/2. Similarly, we want to say that the output
“has bias 1" if pg = 1 and p; = 0. Finally, we want to say that
the output “has bias —1" if pgp = 0 and p; = —1.

@ Interpolating this intuition, we want to say that the bias of the
output distribution of the algorithm above is pg — p1
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Bias: Definition

Definition

Let X be a distribution over the sample space {0,1}". For any
S €{0,1}", we define the bias of X with respect to (the linear
test) S as

biasx(S) := NX(S)
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Collision Probability

@ Let X and Y be two probability distributions over {0,1}"

@ col(X, Y) refers to the probability that two samples drawn
according to X and Y turn out to be identical. We know that

ol(X,Y)=N(X,Y) =N Y X(S)
Se{0,1}"

o Equivalently, we have

col(X,Y) Z biasx (S) - biasy(S)
Se{o 1}"
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Bias of XOR of two Distributions

@ Recall that we had defined the distribution (X @ Y) as a
distribution over {0,1}" that is identical to the function
N(X % Y).

@ We had also proven that
(X + Y)(S) = X(S)- Y(S)
@ So, we can conclude that

biasxqy (S) = biasx(S) - biasy (S)
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Statistical Distance of Two Distributions

e For two function f,g: {0,1}" — R, let us define L1(f — g) as

follows
1

L(f-g)=1 > f(x)—g)
x€{0,1}"
e We can upper-bound Li(f — g) using f and g as follows

1

L(f-g) =5 D [f(x) e
x€{0,1}"
1/2
< %\m Z (f(x) — g(x))2 , by Cauchy-Schy
x€{0,1}"
1/2
=5 X ()-8’
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Statistical Distance of Two Distributions

1/2

= Z (f — g)(S) , by Parseval's

1/2

Se{0,1}"

= by(F — 8)
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Statistical Distance of Two Distributions [

@ We can obtain a similar result for statistical distance, which is
the analogue of Li(-) for functions

25D (X, Y) = Y |X(x)= Y(%)]
x€{0,1}"

@ So, we have
2SD (X, Y) = NLi(X — Y) < Nbo(X — Y) = fy(biasx — biasy)
That is,

2SD(X,Y)< Y (biasx(S) — biasy(S))’
Se{0,1}"
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Summary

Functions Probability

X(S) biasx(S) := NX(S)
(X.Y) = Yscioayn X(S)Y(S) | col(X,Y) = % 3¢ 0.1y biasx(S)biasy(S)

(X * Y)(S) = X(S)Y(S) biasxay (S) = biasx (S)biasy (S)

Li(X - Y)< (X -Y) 2SD (X, Y) < fa(biasx — biasy)
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XOR Lemma

o Let X be a distribution over {0,1} such that P[X = 0] = ¢
and P[X =1] = L3¢

o Note that n =1 and biasx(0) = 1 and biasx(1) = ¢

o Let S, =X pX@ ... ¢ X

e Note that

biass(0) = biasg()(0) - biasg() (0)- - - biasy ) (0) =1
o Note that
biass(1) = bias(1)(1) - biasg) (1) - - biasgn) (1) = &"

en

@ From the biases, we can conclude that P[S, = 0] = 1+T
P[S,=1] =1

and
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XOR Lemma [

@ Further, we can conclude that S, is very close to the uniform
distribution over {0,1}, namely Uyq 1;. Note that
biasy, ,,(0) = 1 and biasy,,,(1) = 0. So, the statistical
distance between S, and Uyq 1} is upper-bounded as follows.

2SD (Sn,zu{o,l}) < by(biass, —biasy ) = £2((1.€")~(1,0)) = &”

That is, S, is getting close to the uniform distribution
exponentially fast!

@ In general, we can consider the sum S, = X; ®--- & X,,, where
Xi,...,X, are independent distributions over {0, 1} with bias
€1,...,&n, respectively. Then, we shall have
biass, (1) = e1€2- - - €p.
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o It is extremely crucial that the distributions X1,...,X,, are
independent. Otherwise, we cannot multiply the biases to
obtain the bias of the sum S,. For example, let (Xy,...,X},)
be uniform random variables over {0,1}" such that their parity
is 0 (that is, they have even number of 1s). Each random
variable has biasx;(1) = 0. However, the random variable S,
has biasg, (1) = 1.
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A Combinatorial Proof.
@ To compute the bias biasg, (1), we need to estimate

P[S, = 0] — P[S, = 1]

Z 00200
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_(l4+e 1-¢ "_8,,
== 5 =

@ Note that this conclusion followed so easily using Fourier

analysis
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